Hemoglobinopathies in Pregnancy

Pregnancy ECHO

Lauren Theilen, MD

May 4th, 2018
Hemoglobin structure

- 4 interlocking polypeptide chains with attached heme molecules
 - Hemoglobin A = 2 alpha + 2 beta
 - Hemoglobin F = 2 alpha + 2 gamma
 - Hemoglobin A₂ = 2 alpha + 2 delta

- Hemoglobinopathies = single-gene disorders
 - Structural hemoglobin variants
 - Thalassemias
Sickle cell disease – pathophysiology

• A group of autosomal recessive disorders of beta globin structure
 • Hb S
 • Hb C
• Under conditions of decreased oxygen tension, red blood cells become distorted
 • Vaso-occlusion
 • Hemolysis
Sickle cell disease – complications

- **Pain**: distinguish acute painful episode from life-threatening crisis
- **Infection**: bacteremia, meningitis, pneumonia
- **Multiorgan failure**: requires prompt exchange transfusion
- **Anemia**: chronic compensated hemolysis, crises
- **Neurologic**: stroke, TIA, epilepsy, PRES
- **Pulmonary**: acute chest syndrome, pulmonary hypertension
- **Renal**: chronic kidney disease, hypertension, renal infarct
- **Skeletal**: dactylitis, osteoporosis, osteomyelitis, avascular necrosis
- **Cardiac**: cardiomyopathy, myocardial infarction, dysrhythmia
- **Hepatobiliary**: acute ischemia, transfusional iron overload
- **Pregnancy**: IUGR, IUFD, preeclampsia
Thalassemias

• Reduced synthesis of globin chains* leading to microcytic anemia
• Classified according to globin chain affected
 • Alpha
 • Beta
• Different molecular mechanisms arose in different parts of the world

*Can also have structural changes in alpha globin chains (Hb Constant Spring, Hb Qong Sze), but these are much less common.
Alpha thalassemia

<table>
<thead>
<tr>
<th>Condition</th>
<th>Chromosomes 16</th>
<th>Functional genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Silent carrier</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Alpha-thal trait</td>
<td> or </td>
<td>2</td>
</tr>
<tr>
<td>HbH Disease</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hydrops Fetalis</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Beta thalassemia

• Mutation in beta globin gene causing either absent or deficient beta chain production
• Heterozygotes have beta-thalassemia minor
 • Often seen in association with Hb S
 • If no normal beta chain production, results in clinically severe sickle cell-beta thalassemia with no production of Hb A
• Homozygotes have either beta-thalassemia major or beta-thalassemia intermedia
 • Depends on the degree of beta chain production associated with the specific mutation
Genetic counseling

• Hemoglobinopathies are heritable conditions
 • Autosomal recessive, with some caveats
• Ethnicity not always a good predictor of risk
Screening

- Start with CBC/MCV
 - Part of routine prenatal labs
- Hemoglobin electrophoresis
 - African descent
 - Microcytic anemia with normal ferritin
 - Solubility testing inadequate
- DNA-based testing for alpha globin gene deletions
 - Microcytic anemia with normal ferritin AND normal hemoglobin electrophoresis
Summary of clinical pearls

- Offer carrier screening to individuals at increased risk for being hemoglobinopathy carriers
- CBC and hemoglobin electrophoresis are appropriate initial lab tests for hemoglobinopathy screening
 - NOT solubility testing
- Offer genetic counseling to couples at risk for having a child with sickle cell disease or thalassemia
- Pregnant women with sickle cell disease or thalassemia should be co-managed with hematology and MFM
Questions?