OB³
Obstetrics, Obesity, Oh Boy

Marcela Smid
Project ECHO
May 19th, 2017
DISCLOSURE

M. Smid has no relevant financial interests to disclose.
Objectives

1. Oh boy
 (how big is this problem)

2. Obesity
 (let’s talk about fat, baby)

3. Obstetrics & obesity
 (what we think we know aka best practices for obese women)

4. Cubed
 (what I think of all of this)
Obesity epidemiology

• Prevalence of obesity increased dramatically in the last 25 years
 – More than 33% of women are obese.
 – More than 50% pregnant women obese or overweight.
 – 8% reproductive age women extremely obese

• Revised IOM pregnancy weight gain recommendations (2009)
 – Overweight = BMI 25-29.9
 – Obese = BMI 30 or greater.
 – Does not differentiate class I (30-34.9), class II (35-39.9) and class III (≥40)

• Highest rate in black (50%), then Mexican-American (45%), then white (33%)
Percent of Obese (BMI > 30) in U.S. Adults

1985

CDC

No Data <10% 10%-14% 15%-19% 20%-24% 25%-29% ≥30%
Obesity 2008
Obesity 2010
Projected Obesity 2030

[Map of the United States showing projected obesity rates in 2030 with different color codes for various percentage ranges.]
Childhood obesity 2011
Globesity (actual WHO term)

• Worldwide obesity has more than **doubled** since 1985.
• Surpassed smoking as #1 preventable cause of death.
• In 2014, >**1.9 billion** adults were overweight and 600 million were obese.
• **42 million children** under the age of 5 were overweight or obese in 2013.

World Health Organization
http://www.who.int/mediacentre/factsheets/fs311/en/
Worldwide globesity

Fig. 7.1 Age-standardized prevalence of obesity in men aged 18 years and over (BMI ≥30 kg/m²), 2014

Prevalence of obesity (%)*

- <5
- 5–14.9
- Data not available
- 15–24.9
- ≥25
- Not applicable

* BMI ≥ 30 kg/m²
Worldwide globesity

Fig. 7.2 Age-standardized prevalence of obesity in women aged 18 years and over (BMI $\geq 30 \text{ kg/m}^2$), 2014

Prevalence of obesity (%)*

- <5
- 5–14.9
- Data not available
- 15–24.9
- ≥25
- Not applicable

* BMI $\geq 30 \text{ kg/m}^2$

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.
Obesity stigma

- Negative attitudes
- Discrimination
- Blame
- Social & psychological impact
 - Mental health
 - Depression and lower self esteem
 - Education
 - Teachers
 - Parents
 - Employment
 - Obese women make $6000 less than non-obese women
 - Non-obese men no difference but less represented in managerial positions.

Puhl and Brownell, 2001
Obesity stigma in health care

- **Physicians (n=400)**
 - Discomfort, reluctance or dislike
 - Drug addiction, alcoholism, mental illness, obesity

- **Nurses (n=586)**
 - 24% say touching an obese patient “repulses them.”
 - Dissatisfaction with own weight positively correlated with negative stereotypes

- **Medical students (n=130)**
 - Uniformly negative attitude toward morbid obesity

Klein et al, 1982; Bagley et al 1987; Blumberg & Mellis 1980
I'M ALL ABOUT THAT BASS PANNUS

NO TREBLE
Defining obesity

- **Adverse medical condition** in which excess adipose tissue accumulation to the extent adversely affects health
- Since 1998, **BMI categories** are used in the US & worldwide
Guessing the Patient’s Weight

- Physicians: 59 - 66%
- RNs: 66 - 78%
- Paramedics: 74%
- Patients: 95 - 97%
Guessing that BMI

- 206 health care practitioners in Ireland and Canada

Ahern et al, 2012

<table>
<thead>
<tr>
<th>Actual BMI (kg/m²)</th>
<th>Endos (n = 21)</th>
<th>GPs (n = 96)</th>
<th>Dietitians (n = 50)</th>
<th>Physios (n = 39)</th>
<th>All (n = 206)</th>
<th>p Value<sup>a</sup></th>
<th>p Value<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>31 (29 - 34)</td>
<td>29 (28 - 31)</td>
<td>29 (27 - 31)</td>
<td>28 (26 - 28)</td>
<td>29 (27 - 31)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>40</td>
<td>32 (30 - 35)</td>
<td>30 (30 - 33)</td>
<td>30 (29 - 32)</td>
<td>30 (27 - 32)</td>
<td>30 (29 - 33)</td>
<td>0.002</td>
<td><0.001</td>
</tr>
<tr>
<td>51</td>
<td>40 (38 - 49)</td>
<td>40 (35 - 42)</td>
<td>40 (37 - 45)</td>
<td>38 (34 - 40)</td>
<td>40 (35 - 42)</td>
<td>0.044</td>
<td><0.001</td>
</tr>
<tr>
<td>52</td>
<td>42 (40 - 45)</td>
<td>38 (35 - 40)</td>
<td>40 (35 - 45)</td>
<td>39 (33 - 42)</td>
<td>39 (35 - 43)</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td>72</td>
<td>50 (45 - 58)</td>
<td>42 (38 - 45)</td>
<td>47 (40 - 50)</td>
<td>42 (37 - 46)</td>
<td>44 (39 - 49)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>
What is BMI?

- BMI = Weight/height2
- Developed in 19th century by Lambert Adolphe Jacques Quetelet

Reprints and Reflections

Indices of relative weight and obesity

Ancel Keys1, Flaminio Fidanza2, Martti J Karvonen3, Noburu Kimura4 and Henry L. Taylor5

1Director, Laboratory of Physiological Hygiene, University of Minnesota School of Public Health, 2Professor, Institute of Food and Nutrition Science, University of Perugia, Italy, 3Director, Institute of Occupational Health, Helsinki, Finland, 4Director, Institute of Cardiovascular Research, University of Kurume, Japan and 5Professor, Laboratory of Physiological Hygiene, University of Minnesota School of Public Health

Keys et al 1972
• 21% of men and 31% of women were obese according to BMI
• 50% of men and 62% of women were obese according to body fat defined obesity
• BMI was found to underestimate the number of obese subjects.

Romero et al 2008 *Accuracy of Body Mass Index to Diagnose Obesity In the US Adult Population*
Alternatives to BMI

- 11,000 subjects for up to eight years WHR more predictive of heart attack, stroke, kidney failure, diabetes or death than BMI (Schneirder et al. 2010)

- 60,000 patients for 13 years better predictor of ischemic heart disease (HUNT-II) (Morkedal et al. 2011)

Waist to Hip Circumference Ratio Standards for Men and Women

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN 20-29</td>
<td><0.83</td>
<td>0.83-0.88</td>
<td>0.89-0.94</td>
<td>>0.94</td>
</tr>
<tr>
<td>30-39</td>
<td><0.84</td>
<td>0.84-0.91</td>
<td>0.92-0.96</td>
<td>>0.96</td>
</tr>
<tr>
<td>40-49</td>
<td><0.88</td>
<td>0.88-0.95</td>
<td>0.96-1.00</td>
<td>>1.00</td>
</tr>
<tr>
<td>50-59</td>
<td><0.90</td>
<td>0.90-0.96</td>
<td>0.97-1.02</td>
<td>>1.02</td>
</tr>
<tr>
<td>60-69</td>
<td><0.91</td>
<td>0.91-0.98</td>
<td>0.99-1.03</td>
<td>>1.03</td>
</tr>
<tr>
<td>WOMEN 20-29</td>
<td><0.71</td>
<td>0.71-0.77</td>
<td>0.78-0.82</td>
<td>>0.82</td>
</tr>
<tr>
<td>30-39</td>
<td><0.72</td>
<td>0.72-0.78</td>
<td>0.79-0.84</td>
<td>>0.84</td>
</tr>
<tr>
<td>40-49</td>
<td><0.73</td>
<td>0.73-0.79</td>
<td>0.80-0.87</td>
<td>>0.87</td>
</tr>
<tr>
<td>50-59</td>
<td><0.74</td>
<td>0.74-0.81</td>
<td>0.82-0.88</td>
<td>>0.88</td>
</tr>
<tr>
<td>60-69</td>
<td><0.76</td>
<td>0.76-0.83</td>
<td>0.84-0.90</td>
<td>>0.90</td>
</tr>
</tbody>
</table>
Fat distribution

- Waist circumference and BMI related to mode of delivery
 (Bentham 2014 Arch Dis Child Fetal Neonatal Ed)

- WHR correlates with pre-eclampsia
 (Yamamoto 2001 J Ob Gyn Research)

- Waist circumference at 16 weeks
 - Pregnancy induced hypertension OR 1.8 (95% CI 1.1-2.9)
 - Pre-eclampsia OR 2.7 (95% CI 1.2-3.4)
 - (Satter et al 2001 Obstetrics & Gynecology)
Obesity & obstetrics

- Definition?
- Pre-pregnancy BMI
- Delivery BMI
 - 44% of women will change BMI categories, 6% will change two categories (Kibiru & Raynor, 2004 AJOG), “Severe” BMI 35-50
- Maternal weight 200-300 lbs

NO standard definition
Fertility & obesity

- Adipose tissue is an active endocrine organ
- Reduced fertility (PCOS)
 - Oligoovulation
 - Anovulation
- Less likely to respond to gonadotropics
- Male obesity decreases sperm quality and fertility

Harder to get pregnant spontaneously & less successful ART
Obesity & pregnancy loss

- 2011 systematic review
 - Total 28,538 women spontaneously conceiving women with ≥1 miscarriage
 - 16.6% obese women
 - 11.8% overweight women
 - 10.7% normal weight women

 Boots and Stephenson (2011)

- Meta analysis of 17 trials of women with PCOS - metformin not shown to improve outcomes

 Palomba et al (2009)

Harder to stay pregnant
Obesity Pregnancy Complications

Maternal
- GDM
- HTN/Preeclampsia
- VTE
- Cesarean
- Postpartum weight retention
- Peripartum/postoperative complications
- Anesthesia complications

Perinatal
- Prematurity
- Stillbirth (fetal demise)
- Congenital anomalies
- Macrosomia
 - Traumatic birth injury
- Childhood obesity
Maternal risks of obesity

• Hypertension, gestational HTN & preeclampsia
 – 3 fold increase in preeclampsia or gestational HTN with obesity
 • Risk doubles with each increase of 5 in BMI

• Gestational Diabetes
 – 2.5-4 fold increased risk, increasing with severity of obesity

• Cesarean delivery
 – Rate is 34-47% (class I-II) obesity vs. 20%
 – Most often indicated by labor arrest disorder

• Post-partum hemorrhage
 – 44% increase (Doherty et al 2006)
Maternal risks of obesity

• Intrapartum complications
 – Difficulty fetal monitoring
 – Difficulty assessing fetal weight
 – Protracted labor disorders
 – Shoulder dystocia (?? - conflicting reports)

• Anesthetic complications
 – 2.5-4 fold increased complication rate
 – Difficult intubations & regional anesthesia
 – Initial epidural failure (42 vs 6%)

• Venous thromboembolism
 – 2-5 fold risk increase (absolute risk 3.5-9/1000)
Maternal risks of obesity

• Operative & postpartum complications
 – 3 fold increased rate
 – 20% increase in postpartum hemorrhage
 – Cesarean: increased blood loss, operative time, endometritis, wound infections & breakdown (1.5-2 fold increase)

• VBAC / TOLAC
 – Lower rate of VBAC success
 – Patients weighing >300 lb have <15% success
 – Increased complications with failed TOLAC
 • Operative injury
 • Postoperative infection & wound breakdown
Perinatal risks of obesity

- Fetal demise
 - 20% increase in miscarriage
 - 2-fold increase in fetal demise and even higher risk among morbidly obese
- Prematurity
 - Increase in medically indicated PTD
- Fetal anomalies
 - 2-fold increase in NTDs
 - Increased risk for others: CHD, orofacial clefts, hydrocephalus, omphalocele, limb defects & CDH
- Macrosomia
 - 2-3 fold increase
Obesity & stillbirth

Bodnar 2015 Maternal prepregnancy obesity and cause-specific stillbirth
Obesity & prenatal diagnosis

- **Congenital anomalies**
 - Anencephaly/spina bifida (OR 3.5, 95% CI 1.2-10.3)
 - Folic acid less effective in prevention
 - (OR 0.52 obese vs 0.32 non-obese)
 - Cardiac defects (OR 2.0 95 CI 1.2-3.4)
 - Multiple anomalies (OR 2.0, 95CI 1.1-3.4)

- **Detection rates**
 - Targeted US:
 - Normal 97%, Overweight 91%, Class I 75%, Class II 88%, Class III 75%

Watkins et al 2003
Cedergren and Kallen 2003
Dashe et al 2009

More anomalies and harder to diagnose
Obesity & preterm birth

• Risk of spontaneous preterm birth
 – 2011 systemic review: (84 studies, one million women) no difference by maternal weight *McDonald et al 2010 BMJ*
 – 2009 systemic review: no difference *Tortloni J Matern Fetal Neonatal Med. 2009*
 – *Cnattiingius 2013 JAMA*: possible 1.5-2 fold increase in risk for extreme SPTB for BMI>35
Increased indicated preterm birth – attributed to HTN & DM?

Table 4. Maternal BMI in Early Pregnancy and Risks of Medically Indicated Preterm Delivery

<table>
<thead>
<tr>
<th>BMI Categories</th>
<th><18.5</th>
<th>18.5-<25</th>
<th>25-<30</th>
<th>30-<35</th>
<th>35-<40</th>
<th>≥40</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extremely preterm delivery</td>
<td>17 (0.07)</td>
<td>395 (0.04)</td>
<td>226 (0.06)</td>
<td>108 (0.09)</td>
<td>35 (0.11)</td>
<td>17 (0.16)</td>
</tr>
<tr>
<td>Adjusted OR (95% CI)<sup>b</sup></td>
<td>1.05 (0.63-1.77)</td>
<td>1.51 (1.27-1.79)</td>
<td>2.48 (1.99-3.1)</td>
<td>2.74 (1.92-3.92)</td>
<td>3.84 (2.32-6.38)</td>
<td></td>
</tr>
<tr>
<td>Very preterm delivery</td>
<td>60 (0.15)</td>
<td>1517 (0.15)</td>
<td>745 (0.19)</td>
<td>324 (0.28)</td>
<td>121 (0.37)</td>
<td>71 (0.66)</td>
</tr>
<tr>
<td>Adjusted OR (95% CI)<sup>b</sup></td>
<td>0.97 (0.74-1.27)</td>
<td>1.29 (1.18-1.41)</td>
<td>1.91 (1.68-2.17)</td>
<td>2.52 (2.08-3.06)</td>
<td>4.16 (3.23-5.36)</td>
<td></td>
</tr>
<tr>
<td>Moderately preterm delivery</td>
<td>448 (1.09)</td>
<td>9006 (0.89)</td>
<td>4310 (1.13)</td>
<td>1725 (1.52)</td>
<td>618 (1.91)</td>
<td>256 (2.40)</td>
</tr>
<tr>
<td>Adjusted OR (95% CI)<sup>b</sup></td>
<td>1.24 (1.12-1.38)</td>
<td>1.22 (1.18-1.27)</td>
<td>1.62 (1.54-1.71)</td>
<td>2.00 (1.84-2.18)</td>
<td>2.45 (2.15-2.79)</td>
<td></td>
</tr>
</tbody>
</table>

Women Without Hypertensive or Diabetic Diseases

<table>
<thead>
<tr>
<th>BMI Categories</th>
<th><18.5</th>
<th>18.5-<25</th>
<th>25-<30</th>
<th>30-<35</th>
<th>35-<40</th>
<th>≥40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely preterm delivery</td>
<td>11 (0.03)</td>
<td>168 (0.02)</td>
<td>84 (0.02)</td>
<td>34 (0.03)</td>
<td>11 (0.04)</td>
<td>4 (0.05)</td>
</tr>
<tr>
<td>Adjusted OR (95% CI)<sup>b</sup></td>
<td>1.51 (0.78-2.96)</td>
<td>1.27 (0.96-1.67)</td>
<td>1.69 (1.15-2.5)</td>
<td>1.91 (1.02-3.56)</td>
<td>2.06 (0.75-5.64)</td>
<td></td>
</tr>
<tr>
<td>Very preterm delivery</td>
<td>38 (0.10)</td>
<td>673 (0.07)</td>
<td>263 (0.07)</td>
<td>97 (0.09)</td>
<td>19 (0.07)</td>
<td>17 (0.19)</td>
</tr>
<tr>
<td>Adjusted OR (95% CI)<sup>b</sup></td>
<td>1.43 (1.02-1.98)</td>
<td>0.98 (0.84-1.13)</td>
<td>1.15 (0.92-1.44)</td>
<td>0.75 (0.47-1.2)</td>
<td>1.94 (1.18-3.19)</td>
<td></td>
</tr>
<tr>
<td>Moderately preterm delivery</td>
<td>300 (0.76)</td>
<td>5438 (0.56)</td>
<td>2215 (0.61)</td>
<td>745 (0.72)</td>
<td>233 (0.83)</td>
<td>87 (0.98)</td>
</tr>
<tr>
<td>Adjusted OR (95% CI)<sup>b</sup></td>
<td>1.40 (1.24-1.57)</td>
<td>0.99 (0.94-1.04)</td>
<td>1.07 (0.99-1.16)</td>
<td>1.11 (0.97-1.28)</td>
<td>1.23 (0.99-1.53)</td>
<td></td>
</tr>
</tbody>
</table>
Obesity & intrapartum

- Dysfunctional labor
 - Robinson et al 2011 Obstet Gyn
- Induction
- C-section

Percent of women delivered by cesarean, by BMI category, stratified by parity and prior cesarean delivery status

<table>
<thead>
<tr>
<th>BMI category</th>
<th>Total deliveries</th>
<th>Cesarean, %</th>
<th>Nulliparas</th>
<th>Total deliveries</th>
<th>Cesarean, %</th>
<th>Multiparas and prior cesarean</th>
<th>Total deliveries</th>
<th>Cesarean, %</th>
<th>Multiparas without prior cesarean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>124,389</td>
<td>14.0</td>
<td>57,230</td>
<td>21.8</td>
<td>5288</td>
<td>37.4</td>
<td>61,871</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>≥40.0</td>
<td>8897</td>
<td>27.3</td>
<td>3845</td>
<td>42.8</td>
<td>540</td>
<td>52.8</td>
<td>4512</td>
<td>11.0</td>
<td></td>
</tr>
</tbody>
</table>

OB³: intrapartum

- **ZEPRS database** \((n= 51,250)\)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Underweight (<18.5)</th>
<th>Overweight (25-29.9)</th>
<th>Obese (>=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude RR</td>
<td>Adjusted RR*</td>
<td>Crude RR</td>
</tr>
<tr>
<td></td>
<td>(95 CI)</td>
<td>(95 CI)</td>
<td>(95 CI)</td>
</tr>
<tr>
<td>Composite perinatal outcome</td>
<td>1.31 (1.21,1.42)</td>
<td>1.32 (1.21,1.43)</td>
<td>0.87 (0.75,1.00)</td>
</tr>
<tr>
<td>Maternal death</td>
<td></td>
<td></td>
<td>0.93 (0.74,1.18)</td>
</tr>
<tr>
<td>Cesarean delivery</td>
<td>0.63 (0.48,0.81)</td>
<td>0.62 (0.47,0.81)</td>
<td>3.26 (2.79,3.81)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.11 (2.39,4.06)</td>
</tr>
<tr>
<td>Stillbirth</td>
<td>0.85 (0.63,1.14)</td>
<td>0.90 (0.67,1.22)</td>
<td>1.77 (1.33,2.36)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.90 (1.19,3.03)</td>
</tr>
</tbody>
</table>

*adjusted for Age, RPR, HIV status, HGB, Hypertension during ANC or delivery, and EGA at first ANC visit

Globesity in effect
Obesity & intrapartum

More failed TOLAC and uterine ruptures
Obesity and Intraoperative Risks

Table 3

Log-binomial regression models for the risk of any intraoperative complication, by maternal BMI (n = 51,218)

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted RR (95% CI)</th>
<th>Model 1: direct aRR (95%CI)</th>
<th>Model 2: indirect aRR (95%CI)</th>
<th>Percent of intraoperative risk attributable to surgical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI 18.5 to 29.9 (reference)</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
<td>32</td>
</tr>
<tr>
<td>BMI 30 to 39.9</td>
<td>0.83 (0.75—0.92)</td>
<td>0.87 (0.82—1.00)</td>
<td>0.93 (0.84—1.03)</td>
<td>32</td>
</tr>
<tr>
<td>BMI 40 to 49.9</td>
<td>0.69 (0.58—0.81)</td>
<td>0.66 (0.56—0.79)</td>
<td>0.76 (0.64—0.89)</td>
<td>32</td>
</tr>
<tr>
<td>BMI ≥ 50</td>
<td>1.15 (0.88—1.51)</td>
<td>1.02 (0.78—1.32)</td>
<td>0.98 (0.75—1.27)</td>
<td>51</td>
</tr>
<tr>
<td>Race (ref nonblack)</td>
<td>1.70 (1.55—1.87)</td>
<td>1.67 (1.51—1.83)</td>
<td>1.55 (1.41—1.71)</td>
<td></td>
</tr>
<tr>
<td>PTD < 37 weeks (ref ≥ 37 weeks)</td>
<td>2.44 (2.22—2.69)</td>
<td>2.31 (2.10—2.55)</td>
<td>2.01 (1.82—2.23)</td>
<td></td>
</tr>
<tr>
<td>Skin incision (ref vertical)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pfannenstiel</td>
<td>0.56 (0.50—0.62)</td>
<td>0.56 (0.50—0.62)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>0.46 (0.42—0.54)</td>
<td>0.58 (0.51—0.66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency cesarean delivery (ref: nonemergency cesarean delivery)</td>
<td>2.33 (2.11—2.57)</td>
<td>1.80 (1.62—2.00)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model 1 adjusted for race and PTD < 37 weeks.
Model 2 adjusted for race, PTD < 37 weeks, skin incision type, and emergency cesarean delivery.

aRR, adjusted risk ratio; BMI, body mass index; CI, confidence interval; PTD, preterm delivery; RR, risk ratio.

*Statistical significance at P < .05.

Obesity and intraoperative risks

FIGURE 1
Predicted probability of intraoperative complication by maternal BMI at delivery (n = 51,218)
Super obesity (BMI >50)

- Macrosomia aRR 1.8 95% CI 1.3-2.5
- Pre-eclampsia aRR 1.7 95% CI 1.4-2.1
- Cesarean aRR 1.8 95% CI 1.5-2.2
- 39% of nulliparous super obese women scheduled C-sections

ICU Admission

- aOR 1.69 (CI 1.01-2.87) for ICU admission
- Overall 1 ICU: 153 admissions
- 1 ICU: 77 deliveries of super obese women
- 1 ICU for 144 deliveries for non-obese women
- 1 ICU for 179 every deliveries for Class I or II women
- 1 ICU for 132 every deliveries women with BMI 40s

Marshall et al
Alanis et al
Smid et al
Super obesity & acute neonatal morbidity

- Acute: APGAR < 5, CPR/vent support, TTN, neonatal injury
- Severe: Grade III/IV IVH, nec, seizure, RDS, HIE, meconium aspiration, vent support > 2 day, sepsis, death

<table>
<thead>
<tr>
<th>Maternal and delivery characteristics</th>
<th>Acute neonatal morbidity (n = 41,262)</th>
<th>Severe neonatal morbidity (n = 41,262)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjusted OR</td>
<td>Adjusted OR</td>
</tr>
<tr>
<td></td>
<td>(95% CI)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>BMI: 18.5–29.9 kg/m² (ref)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>BMI: 30–39.9 kg/m²</td>
<td>1.19 (1.01–1.41)</td>
<td>1.26 (1.11–1.42)</td>
</tr>
<tr>
<td>BMI: 40–49.9 kg/m²</td>
<td>1.59 (1.40–1.80)</td>
<td>1.63 (1.38–1.92)</td>
</tr>
<tr>
<td>BMI: ≥50 kg/m²</td>
<td>1.81 (1.46–2.25)</td>
<td>2.08 (1.59–2.73)</td>
</tr>
</tbody>
</table>
What’s the best surgical approach?
Obesity and surgical approach

The Problem of the Pannus: Physician Preference Survey and a Review of the Literature on Cesarean Skin Incision in Morbidly Obese Women

Marcela C. Smid, MD, MA, MS¹ Sarah G. Smiley, MD, MPH² Jay Schulkin, MD³ David M. Stamilio, MD, MSCE¹ Rodney K. Edwards, MD, MS⁴ Alison M. Stuebe, MD, MSc¹,⁵
Table 3 Effect of surgical techniques among extremely obese women ($N = 2,411$)

<table>
<thead>
<tr>
<th>Skin incision type</th>
<th>Pfannenstiel ($N = 1,742$)</th>
<th>Vertical ($N = 669$)</th>
<th>p-Valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite morbidity</td>
<td>224 (12.9)</td>
<td>113 (16.9)</td>
<td>0.01</td>
</tr>
<tr>
<td>Infectious composite</td>
<td>155 (8.9)</td>
<td>80 (12.0)</td>
<td>0.02</td>
</tr>
<tr>
<td>Infection</td>
<td>29 (1.7)</td>
<td>20 (3.0)</td>
<td>0.04</td>
</tr>
<tr>
<td>Endometritis</td>
<td>133 (7.6)</td>
<td>67 (10.0)</td>
<td>0.06</td>
</tr>
<tr>
<td>Wound opening</td>
<td>10 (0.6)</td>
<td>8 (1.2)</td>
<td>0.11</td>
</tr>
<tr>
<td>Seroma/hematoma</td>
<td>14 (0.8)</td>
<td>13 (1.9)</td>
<td>0.02</td>
</tr>
<tr>
<td>Readmission</td>
<td>62 (3.6)</td>
<td>25 (3.7)</td>
<td>0.83</td>
</tr>
</tbody>
</table>
Obesity and surgical approach

- Nine studies on skin incision for obese patients
 - Five = no difference between vertical & LT
 - Three = vertical higher rates
 - One = vertical lower rate

- Selection bias – heavier women are more likely to get vertical skin incisions
Best Practices for Obese Patients

• Preconception counseling
 – Weight reduction program: diet, exercise, behavior modification
 – **Folate Rx**: Higher dose not shown to reduce risk
 – Infertility treatment: recommend weight loss program prior to ART Rx

• Record maternal height & weight at initial visit
 – Weight gain for obese: 11-20 lb (2009 IOM)

• Nutrition consultation

• Encourage exercise regimen (reduced GWG)

• Increased risk of preeclampsia:
 – Consider urine protein: creatine and/or baseline 24 hr urine protein & LFTs
Best Practices for Obese Patients

- Anesthesiology consult (antenatal or early labor)
- Antenatal testing:
 - Consider obesity as an indication for serial NST or BPP in the 3rd trimester
 - **No evidence for fetal risk reduction**
 - Targeted fetal anatomy ultrasound
 - Growth ultrasound(s) if unable to clinically estimate fetal weight
- VBAC counseling: no optimal delivery mode
 - Estimate success rate and if very low offer cesarean to avoid risks associated with failed TOLAC & emergency cesarean
Best Practices for Obese Patients

- Early GDM / Type 2 DM screening
 - Class III ("severe") obesity – screen at 1st visit
 - ADA recommendation: 2hr GTT, FBG or HgbA1c
 - Class I-II obesity – consider early screen with other risk factors present
 - "Expert opinion"
 - Type 2 DM criteria: HgbA1c > 6.5%, fasting BG >126 mg/dl, or 75g 2hr GTT >200 mg/dl

- Apply standard delivery mode guidelines for macrosomia
 - DM: offer cesarean if EFW >4500g
 - Non-DM: offer cesarean if EFW >5000g
 - "Expert opinion"
Best Practices for Obese Patients

- Higher dose of preoperative antibiotics
- Closure of subcutaneous layer after cesarean
- What’s the best cesarean skin incision...Pfannenstiel? Vertical? High transverse (peri-umbilical)?
 - No good data to guide clinical practice
- Thromboprophylaxis after cesarean with pneumatic compression devise (or LMWH)
- Encourage breast feeding
- Refer to a weight reduction specialist postpartum
Dr. Intern: we have a C-section

BMI 45

Class III Obesity

Class III obesity
OB^3: what I think of all of this

- **Globesity is increasing**
 - Makes keeping women & their babies safe more challenging

- **BMI is easy but maybe not be identifying women at highest risk**
 - Meant for screening; not diagnostic

- **Fat is important** and have very little idea about what fat is doing in pregnancy.

- Because we don’t understand fat, we lack answers to basic questions in obstetrics and obesity.

- Embrace and investigate the pannus!
Questions?

Thank you…

Marcela.Smif@hsc.utah.edu