

Perinatal Transmission of Hepatitis C

Terry Box, MD

03/24/2017

Presentation prepared by:Terry BoxDate prepared:03/22/2017

3 Ø

Project ECHO HCV Collaborative

Conflict of Interest Disclosure Statement

Speaker Bureau: AbbVie, Gilead, Intercept, Merck, Salix/Valeant

Consultant/Advisory Board : AbbVie, Gilead, Intercept

<u>Research Support</u>: AbbVie, Bristol Meyers Squibb, Boehringer Ingelheim, Enanta, Gilead, Intercept, Merck, Salix/Valeant

University of California San Francisco

LEARNING OBJECTIVES

- 1. Understand the frequency of vertical transmission of HCV from HCV infected mother to fetus/infant
- 2. Define the risk factors for vertical transmission of HCV
- 3. Determine how to diagnose active HCV in the newborn

Hepatitis C Infection in Children

- Worldwide, hepatitis B and C are the most common causes of chronic viral hepatitis in children and adults [1].
 - Effective vaccination programs against hepatitis B
- Hepatitis C virus (HCV) has become the primary cause of chronic viral hepatitis in children [2]
- Vertical transmission the leading source of infection [<u>3-5</u>]
- Vertical transmission refers to viral transmission
 - from the mother to the infant during pregnancy
 - at the time of delivery
 - during the first 28 days after birth

^{5.} Bortolotti F, Iorio R, Resti M, et al. Epidemiological profile of 806 Italian children with hepatitis C virus infection over a 15-year period. J Hepatol 2007; 46:783.

^{1. &}lt;u>Williams R. Global challenges in liver disease. Hepatology 2006; 44:521.</u>

^{2.} Slowik MK, Jhaveri R. Hepatitis B and C viruses in infants and young children. Semin Pediatr Infect Dis 2005; 16:296.

^{3.} Bortolotti F, Resti M, Giacchino R, et al. Changing epidemiologic pattern of chronic hepatitis C virus infection in Italian children. J Pediatr 1998; 133:378.

^{4.} Bortolotti F, Iorio R, Resti M, et al. An epidemiological survey of HCV infection in Italian children in the decade 1990-1999. J Pediatr Gastroenterol Nutr 2001; 32:562.

Potential Risk for HCV Vertical Transmission

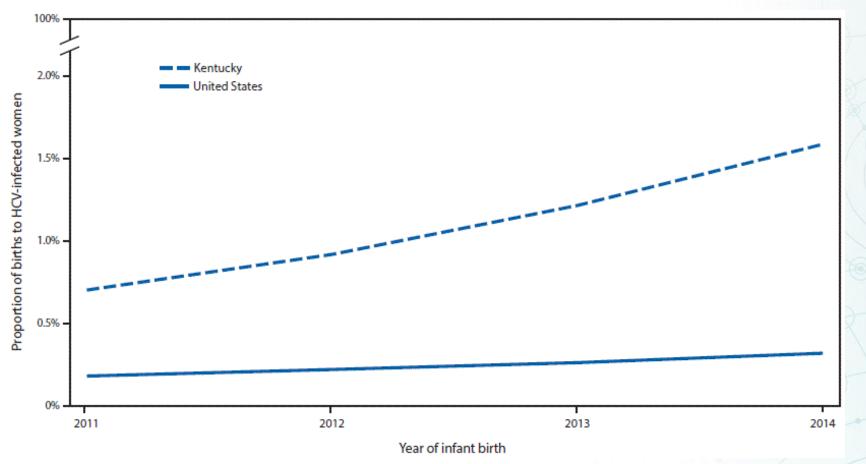
- Vertical transmission occurs in 5.8% (3%-13%) of infants born to women who are infected only with HCV
 - Twice as often in women who are HCV/HIV coinfected (2)
 - or who have high HCV viral loads (3)
- There is currently no recommended intervention to prevent transmission of infection from mother to child (3)
- Increased reported incidence of HCV infection among persons ≤30 yo with similar increases among women and men in this age group
- Increased concern re: number of pregnant women with HCV infection, & in the number of infants who could be exposed to HCV at birth.

3. Kanninen TT, Dieterich D, Asciutti S. HCV vertical transmission in pregnancy: new horizons in the era of DAAs. Hepatology 2015;62:1656–8.

^{1.} Koneru A, et al. Increased Hepatitis C Virus (HCV) Detection in Women of Childbearing Age and Potential Risk for Vertical Transmission — United States and Kentucky, 2011–2014. MMWR Morb Mortal Wkly Rep 2016;65:705–710.

^{2.} Benova L, Mohamoud YA, Calvert C, Abu-Raddad LJ. Vertical transmission of hepatitis C virus: systematic review and meta-analysis. Clin Infect Dis 2014;59:765–73.

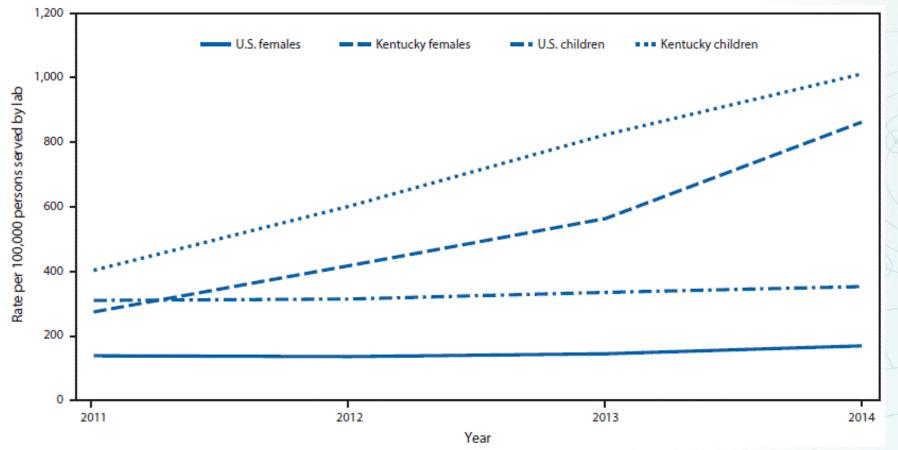
Potential Risk for HCV Vertical Transmission — United States and Kentucky, 2011–2014


- Recent increases in injection drug use --> increases in incidence of HCV infection among young persons
- During 2011–2014, increased rates of HCV detection (antibody or RNA positivity) among women of childbearing age
 - Nationally- 22% (1.4% to 1.7%)
 - Kentucky >200% (2.75% t0 5.6%)
- Birth certificate data showed the proportion of infants born to HCV-infected mothers increased during same period (~4,000,000 births per year)
 - Nationally- 68% (0.19% to 0.32%)
 - Kentucky 124% (0.71% to 1.59%)

Koneru A, et al. Increased Hepatitis C Virus (HCV) Detection in Women of Childbearing Age and Potential Risk for Vertical Transmission – United States and Kentucky, 2011–2014. MMWR Morb Mortal Wkly Rep 2016;65:705–710.

Potential Risk for HCV Vertical Transmission — United States and Kentucky, 2011–2014

Proportion of infants born to hepatitis C virus (HCV)-infected women



Koneru A, et al. Increased Hepatitis C Virus (HCV) Detection in Women of Childbearing Age and Potential Risk for Vertical Transmission – United States and Kentucky, 2011–2014. MMWR Morb Mortal Wkly Rep 2016;65:705–710.

Potential Risk for HCV Vertical Transmission -

United States and Kentucky, 2011–2014

Hepatitis C virus (HCV) detection rate among females aged 15–44 years and HCV testing rate among children aged ≤2 years

Koneru A, et al. Increased Hepatitis C Virus (HCV) Detection in Women of Childbearing Age and Potential Risk for Vertical Transmission — United States and Kentucky, 2011–2014. MMWR Morb Mortal Wkly Rep 2016;65:705–710.

ECHC

Hepatitis C in Pregnancy

- Anti-HCV positivity was found in (370) 2.4% of 15,250 pregnant women studied in Italy
 - presence of anti- HCV was tested by means of EIA III
 - 72% were HCV-RNA-positive
- ALT, HIV Ab, and HCV-RNA tested during the 1st month & 3rd trimester of pregnancy, and 6 mo. after delivery
- proportion of anti-HCV- and HCV RNA positive newborns was
 5.1% after 1 year (8 of 155)
 - All had same genotype as mother
- Rate of HCV transmission was not affected by the
 - type of delivery or
 - breastfeeding, or the
 - HIV status of the mother

D. Conte, et al. Prevalence and clinical course of chronic hepatitis C virus (HCV) infection and rate of HCV vertical transmission in a cohort of 15,250 pregnant women. Hepatology, 31 (2000), pp. 751–755

Hepatitis C in Pregnancy

Risk Factors for Vertical Transmission

- 78 HCV-positive/HIV-negative women with offspring in prospective study to define the prevalence of and <u>risk factors</u> for HCV vertical transmission
- Infants tested for ALT and HCV-RNA at birth and at 4, 8, 12, 18, and 24 months of age
- 8 of 60 (13.3%) infants born to HCV-RNA positive mothers acquired HCV infection
 - High maternal viral load (P < 0.05),
 - Maternal HCV risk factors (P < 0.004) and
 - History of intrapartum blood transfusion (P < 0.05) were associated with increased risk of HCV vertical transmission.
- Only 2 (3.3%) were still infected by the end of follow-up
 - Infants' genotypes matched that of the mothers.
 - ALT levels were in the normal range in all study subjects throughout follow-up.

O. Ceci, et al. Vertical transmission of hepatitis C virus in a cohort of 2447 HIV-seronegative pregnant women: a 24-month prospective study. J. Pediatr. Gastroenterol. Nutr., 33 (2001), pp. 570–575

Hepatitis C in Pregnancy Risk Factors for Vertical Transmission

• <u>Conclusions</u>:

- Although vertical transmission from HIV-negative mothers occurs in 13% of cases, there is a high rate of spontaneous viral clearance (75%).
- High maternal viral load and mothers belonging to HCV risk categories were the only variables predictive of the vertical transmission.

O. Ceci, et al. Vertical transmission of hepatitis C virus in a cohort of 2447 HIV-seronegative pregnant women: a 24-month prospective study J. Pediatr. Gastroenterol. Nutr., 33 (2001), pp. 570–575

Hepatitis C in Pregnancy: Risk Factors for Vertical Transmission and Natural Hx of HCV Infection Acquired in Infancy

- 244 infants born to HCV Ab-positive mothers were followed from birth until age 12 months
- Maternal serum was collected at enrollment and delivery
- Infant serum was collected@ birth and at 8 well-child visits.
- Testing included:
 - HCV Ab
 - HCV RNA (190/244 {78%} had detectable RNA at delivery)
 - Genotype determination

HCV-infected infants were followed annually until age 5 yr

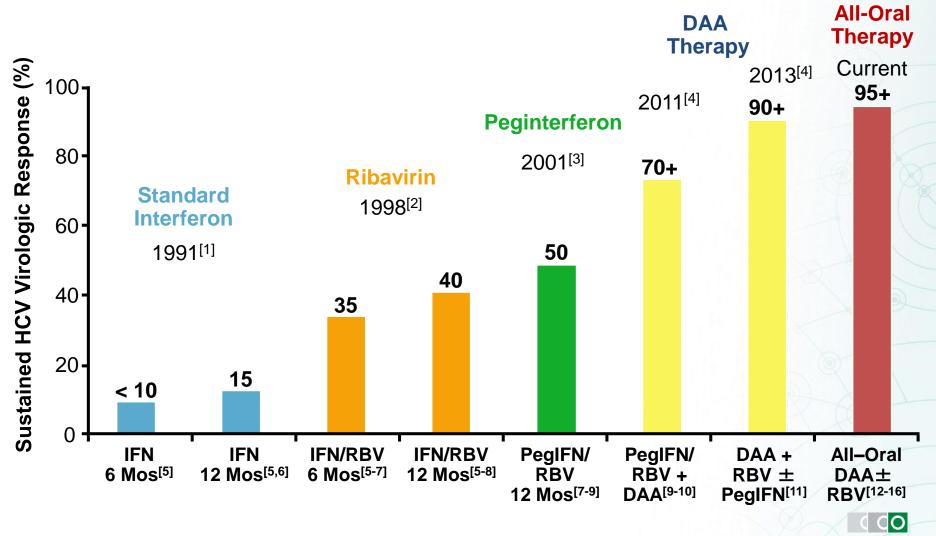
Hepatitis C in Pregnancy: Risk Factors for Vertical Transmission and Natural Hx of HCV Infection Acquired in Infancy

- 9 of 190 (4.7%) infants born to mothers who were HCV RNA positive at delivery became infected
- Transmission rate-
 - 3.8% (7) of the 182 who were HIV negative
 - 25.0% (2) of the 8 who were HIV positive
- 3 (33%) infected infants became HCV RNA negative
- Multivariate analysis: High rates of transmission assoc. with
 - <u>membrane rupture >6 h (odds ratio [OR], 9.3</u>)
 - internal fetal monitoring (OR, <u>6.7</u>)

Hepatitis C in Pregnancy:

Addressing Risk Factors for Vertical Transmission

- Perinatal infection generally occurs during intrapartum period
- Suggested intra-partum management
 - Avoid fetal scalp monitoring
 - Consider cesarean section>
 - Early post membrane rupture
 - Elective, especially in HCV/HIV coinfected mothers


Hepatitis C in Pregnancy:

Natural Hx of HCV Infection Acquired in Infancy

- Recommended screening and follow-up of infants born to HCV infected mothers
 - RNA testing on 2 occasions between ages 2 and 6 months (preferred)
 - HCV Ab testing >18 months (avoids detection of passively transferred maternal HCV Ab)
- Clinical course of infected infants
 - No clinical hepatitis
 - Transient ALT abnormalities
 - High rate of spontaneous resolution of infection (25%-75%)
- No evidence that breastfeeding spreads HCV
 - HCV RNA in breast milk of 19/37 (51%) mothers who provided samples
 - Presence of HCV RNA in breast milk not related to maternal viral load

Current HCV All-Oral Therapies: Highly Effective, Simple, Well Tolerated

Slide credit: clinicaloptions.com

HCV Vertical Transmission in Pregnancy: New Horizons in the Era of DAAs

Table 1. Safety Profile of New DAAs in Pregnancy

DAA Combination	Pregnancy Category
(1) Paritaprevir* + (2) ombitasvir*	(1) B, (2) B
 (1) Paritaprevir* + (2) dasabuvir* + (3) ombitasvir* 	(1) B, (2) B, (3) B
 Daclatasvir[†] + (2) asunaprevir[‡] 	(1) N/A, (2) N/A
 Daclatasvir[†] + (2) asunaprevir[‡] + beclabuvir 	(1) N/A, (2) N/A, (3) N/A
(1) Sofosbuvir* + (2) ledipasvir*	(1) B, (2) B
 Sofosbuvir* + (2) ledipasvir* + vedroprevir 	(1) B, (2) B, (3) N/A
 (1) Sofosbuvir* + (2) ledipasvir* + (3) GS-9669 	(1) B, (2) B, (3) N/A
(1) Sofosbuvir* + (2) simeprevir*	(1) B, (2) C
(1) Grazoprevir, (2) elbasvir	(1) N/A, (2) N/A
 Daclatasvir[†] + (2) sofosbuvir[*] 	(1) N/A, (2) B
(1) Sofosbuvir* + (2) velpatasvir	(1) B, (2) N/A
(1) Grazoprevir, (2) elbasvir \pm (3) MK-3682	(1) N/A, (2) N/A, (3) N/A

PREGNANCY CATEGORY B

No risk in other studies: Animal reproduction studies have failed to demonstrate a risk to the fetus and there are no adequate and wellcontrolled studies in pregnant women OR Animal studies have shown an adverse effect, but adequate and well-controlled studies in pregnant women have failed to demonstrate a risk to the fetus in any trimester.

PREGNANCY CATEGORY C

Risk not ruled out: Animal reproduction studies have shown an adverse effect on the fetus and there are no adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks.

*FDA-approved DAA.

[†]Approved in Europe, Brazil, and Japan.

[‡]Approved in Japan.

Abbreviation: N/A, not available.

Kanninen TT, Dieterich D, Asciutti S. HCV vertical transmission in pregnancy: new horizons in the era of DAAs. Hepatology 2015;62:1656–8.

HCV Vertical Transmission in Pregnancy: Parallels With HIV Therapy in Pregnancy

- Currently used ART for HIV in pregnancy have resulted in dramatic reductions in disease associated maternal-fetal morbidity and mortality
- Majority of antiviral drugs used in HIV, with the exception of efavirenz, are safe throughout pregnancy and their benefits far outweigh any risks.
- Zidovudine, a polymerase inhibitor, routinely used in pregnancy: Significantly reduces the risk of vertical HIV transmission safely
- Hepatotoxicity and teratogenicity are the main concerns with nucleoside reverse transcriptase inhibitors.
- Protease inhibitor safety profile in pregnancy, particularly in regard to the risk of preterm birth, has been raised
- NS5A inhibitors are not used in HIV treatment, but their profile in pregnancy is promising for possible use in HCV infected mothers

HCV Vertical Transmission in Pregnancy: New Issues in the Era of DAAs

- Is it time to initiate routine screening for HCV in all pregnancies?
- What measures are appropriate to diminish risk of vertical transmission of HCV?
 - Should cesarean section for non-obstetric indication be considered?
- Can we justify treating HCV during pregnancy?
 - If so, what would we use and when would we treat?

